Covariance functions and random regression models for cow weight in beef cattle.

نویسندگان

  • J A Arango
  • L V Cundiff
  • L D Van Vleck
چکیده

Data from the first four cycles of the Germplasm Evaluation program at the U.S. Meat Animal Research Center were used to evaluate weights of Angus, Hereford, and F1 cows produced by crosses of 22 sire and 2 dam (Angus and Hereford) breeds. Four weights per year were available for cows from 2 through 8 yr of age (AY) with age in months (AM). Weights (n = 61,798) were analyzed with REML using covariance function-random regression models (CF-RRM), with regression on orthogonal (Legendre) polynomials of AM. Models included fixed regression on AM and effects of cow line, age in years, season of measurement, and their interactions; year of birth; and pregnancy-lactation codes. Random parts of the models fitted RRM coefficients for additive (a) and permanent environmental (c) effects. Estimates of CF were used to estimate covariances among all ages. Temporary environmental effects were modeled to account for heterogeneity of variance by AY. Quadratic fixed regression was sufficient to model population trajectory and was fitted in all analyses. Other models varied order of fit and rank of coefficients for a and c. A parsimonious model included linear and quartic regression coefficients for a and c, respectively. A reduced cubic order sufficed for c. Estimates of all variances increased with age. Estimates for older ages disagreed with estimates using traditional bivariate models. Plots of covariances for c were smooth for intermediate, but erratic for extreme ages. Heritability estimates ranged from 0.38 (36 mo) to 0.78 (94 mo), with fluctuations especially for extreme ages. Estimates of genetic correlations were high for most pairs of ages, with the lowest estimate (0.70) between extreme ages (19 and 103 mo). Results suggest that although cow weights do not fit a repeatability model with constant variances as well as CF-RRM, a repeatability model might be an acceptable approximation for prediction of additive genetic effects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Random regression analyses using B-spline functions to model growth of Nellore cattle.

The objective of this study was to estimate (co)variance components using random regression on B-spline functions to weight records obtained from birth to adulthood. A total of 82 064 weight records of 8145 females obtained from the data bank of the Nellore Breeding Program (PMGRN/Nellore Brazil) which started in 1987, were used. The models included direct additive and maternal genetic effects ...

متن کامل

Estimates of genetic covariance functions assuming a parametric correlation structure for environmental effects

A random regression model for the analysis of ‘repeated’ records in animal breeding is described which combines a random regression approach for additive genetic and other random effects with the assumption of a parametric correlation structure for within animal covariances. Both stationary and non-stationary correlation models involving a small number of parameters are considered. Heterogeneit...

متن کامل

Constructing covariance functions for random regression models for growth in Gelbvieh beef cattle.

Genetic parameters for a random regression model of growth in Gelbvieh beef cattle were constructed using existing estimates. Information for variances along ages was provided by parameters used for routine Gelbvieh multiple-trait evaluation, and information on correlations among different ages was provided by random regression model estimates from literature studies involving Nellore cattle. B...

متن کامل

Estimates of Covariance Functions for Growth of Australian Beef Cattle from a Large Set of Field Data

INTRODUCTION Random regression (RR) models for longitudinal data often require a considerable number of parameters to describe the associated covariance functions. Estimation of these parameters has proven cumbersome and subject to sampling problems. Moreover, computational restraints have limited analyses of data sets sufficiently large to supply accurate estimates. This holds especially for c...

متن کامل

Breeding value accuracy estimates for growth traits using random regression and multi-trait models in Nelore cattle.

We quantified the potential increase in accuracy of expected breeding value for weights of Nelore cattle, from birth to mature age, using multi-trait and random regression models on Legendre polynomials and B-spline functions. A total of 87,712 weight records from 8144 females were used, recorded every three months from birth to mature age from the Nelore Brazil Program. For random regression a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of animal science

دوره 82 1  شماره 

صفحات  -

تاریخ انتشار 2004